

Modern Trends in AI/ML

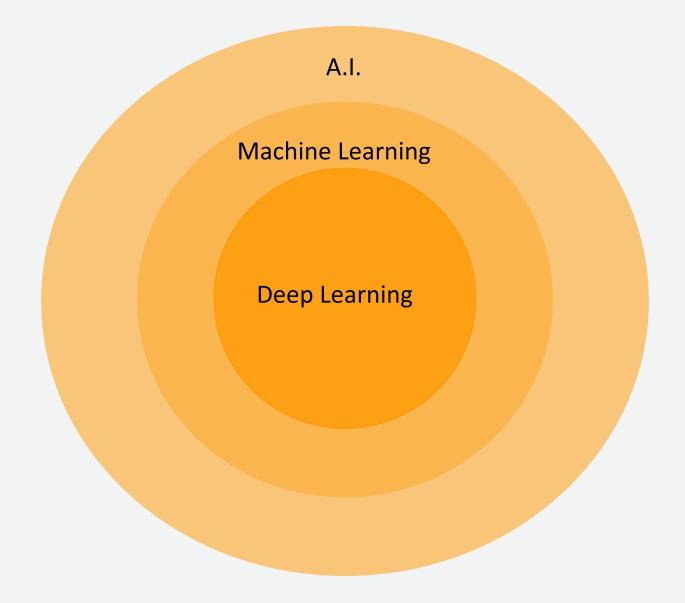
Brad Kenstler Sr. Data Scientist, Amazon ML Solutions Lab 10 / 24 / 2019

Agenda

- 1. AI/ML Review
- 2. Learning from Data
- 3. Trends in AI/ML application
- 4. Case Studies

AI/ML Lifecycle Review

Al vs. ML vs. DL



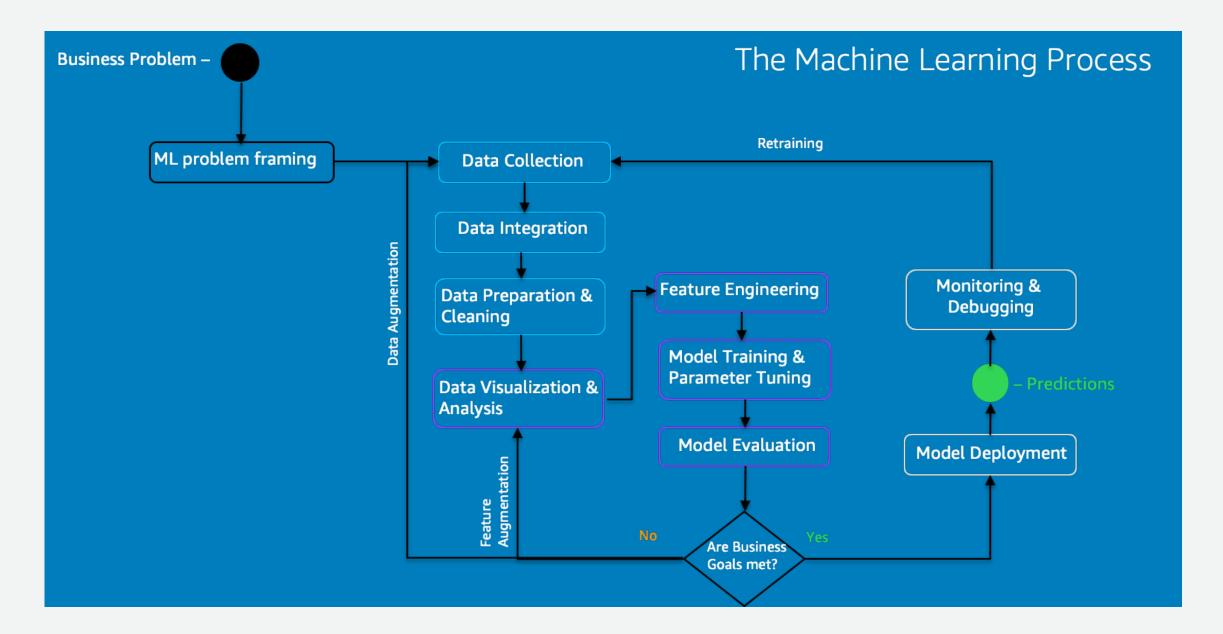
Rules vs. Learning

Rules-based system

- Hand-crafted logic
- Designed by humans to accomplish some goal
- Requires a priori knowledge

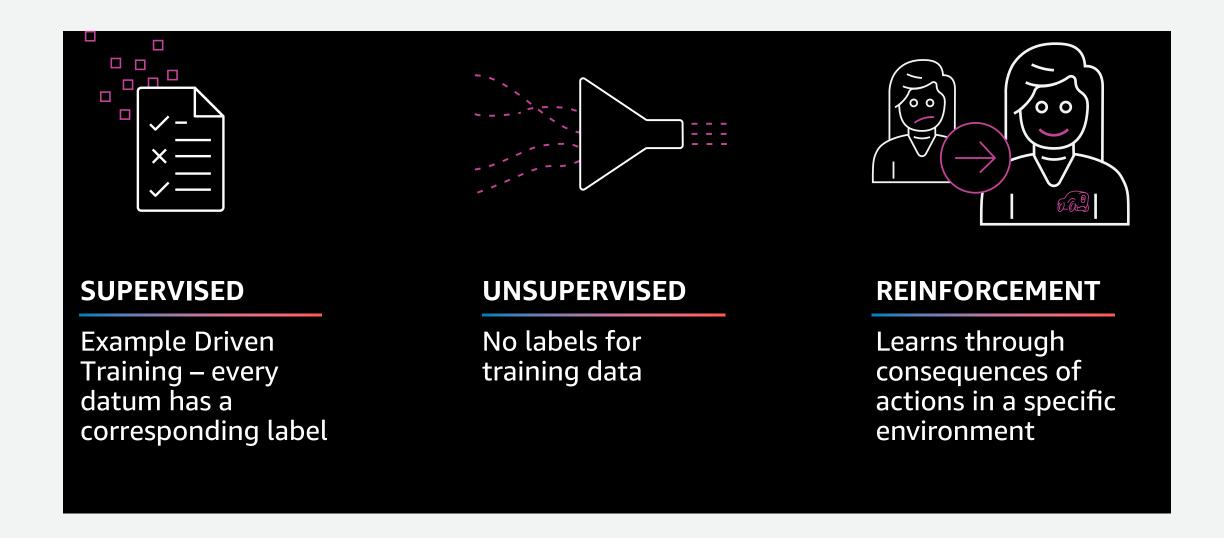
Machine Learning

- Learn rules from data that minimize some objective
- May or may not be interpretable
- Requires examples, or data



Learning from Data

How do we learn from data?



Structured Data

Observations or Features

Sepal Length	Sepal Width	Petal Length	Petal Width
0.3	1.2	1.2	2.0
0.5	0.9	1.1	0.9
1.3	1.4	0.9	1.2

Annotation or Labels/Targets

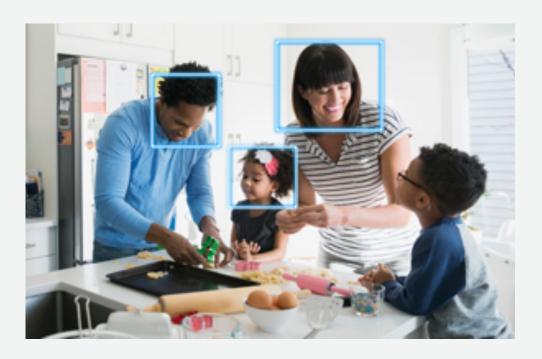
Class
Iris-Setosa
Iris-Virginica
Iris-Versicolour

Unstructured Data

Observations or Features



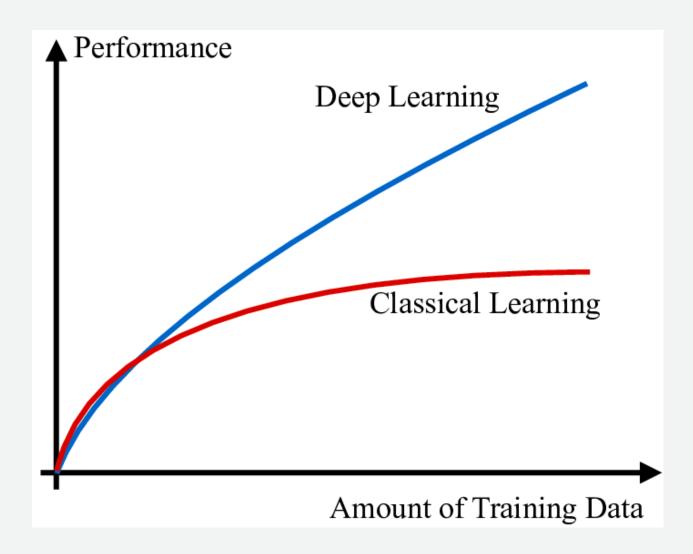
Annotation or Labels/Targets



How Much Data, and What Kind?

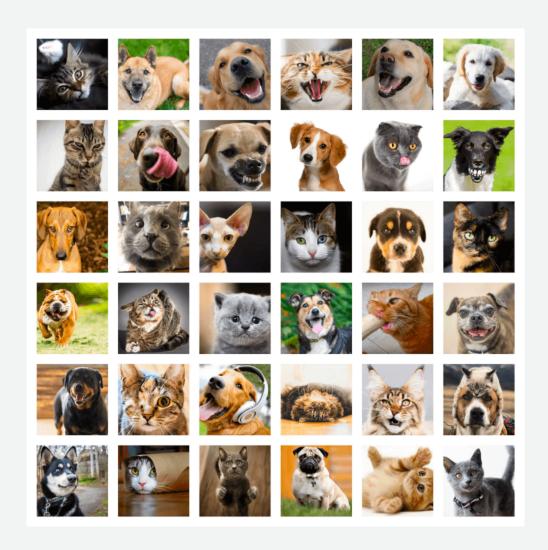
- ML/DL models need large datasets to learn from
- Datasets should be representative of the data they are intended to operate on
- Datasets should be large enough to capture expected variation
- Actual amounts depend on use case, but more is always better

More Data, Better Results



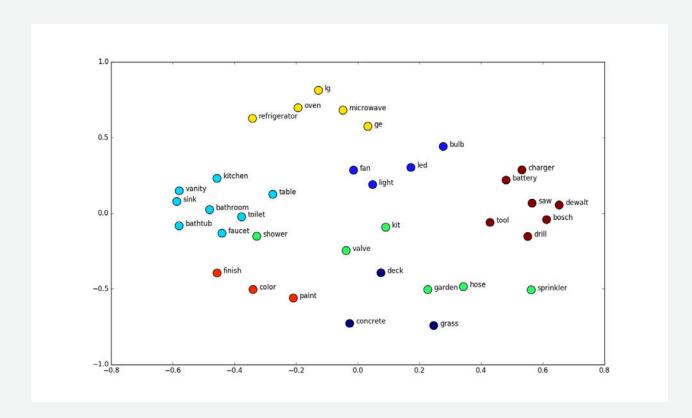
Computer Vision

- Tens of thousands of examples per class
- Hundreds to thousands if using pretrained models
- Variations in breed, lighting, perspective, setting, etc.



Natural Language Processing (NLP)

- Tens of billions of words in corpus
- Substantially less if using pre-trained models
- Variations in texts, word expression, semantics



Structured Data

Tables

- Thousands to millions
- Representative distribution of features

Time Series

- Hundreds to thousands
- Representative distribution of features over multiple periods

Trends in AI/ML Application

Two Common Scenarios

General-purpose use cases

- ML models trained on millions of data points to do a common task
 - E.g. facial recognition, language translation, voice transcription, etc.
- Completely managed black boxes
- Leveraged via API calls, available as services

Custom use cases

- Custom models trained on custom data set
 - Unique use case or data, e.g. legal document classification
- End-to-end process facilitated by user (with help)

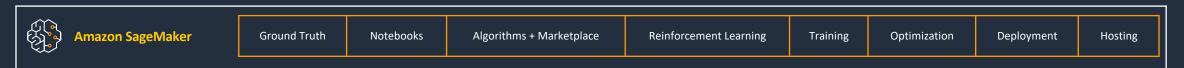
THE AWS ML STACK

Broadest and deepest set of capabilities

AI Services

VISION			S	БРЕЕСН	LAN	IGUAGE	CHATBOTS FORECASTING		RECOMMENDATIONS	
Ø	®				A A X		- -	a	®	
R E K O G N I T I O N I M A G E	REKOGNITION VIDEO	TEXTRACT	POLLY	TRANSCRIBE	TRANSLATE	COMPREHEND & COMPREHEND MEDICAL	LEX	FORECAST	PERSONALIZE	

ML Services



ML Frameworks + Infrastructure

FRAMEWORKS	INTERFACES	INFRASTRUCTURE								
**TensorFlow	6 GLUON									
PYT <mark>6</mark> RCH	K Keras	EC2 P3 & P3DN	EC2 G4 EC2 C5	FPGAS	DL CONTAINERS & AMIS	ELASTIC CONTAINER SERVICE	ELASTIC KUBERNETES SERVICE	GREENGRASS	ELASTIC INFERENCE	INFERENTIA

Case Studies

Financial Services Customer ML Solution

Business Issue

Automatic Due Diligence

Support and automate the due diligence process on financial documentation through deep natural language processing

Data

- Corpus of ~1000 documents similar to the target documents (unlabeled)
- Domain specific Wikipedia data
- 2,500 annotated pages (sections of interest highlighted using tagtog, an APN solution)

Machine Learning approach

- Word embedding generation w/ Amazon SageMaker BlazingText
- Recurrent neural network sentence classifier custom built on Amazon SageMaker
- SageMaker integrated frontend based on tagtog to serve predictions natively in pdf and allow users to provide feedback

- Reducing document due diligence process by 50% (from 8h to 4h)
- End-to-end natural language processing (NLP) platform to
 - annotate pdf documents
 - o train deep learning NLP models
 - provide feedback on machine generated annotations in an easy-to-use user interface to improve the models over time

Retail Customer ML Solution

Business Issue

Markdown Pricing Optimization

Optimize the timing and percentage of markdown (clearance) event for each item at any given week.

Data

- Time series of weekly item sales and their prices
- Special promotion events
- Item history including the first sale date and base price

Machine Learning approach

- XGBoost and Deep Neural Network for sales forecasting
- Customized optimization objective function to optimize a balanced combination of future sell-through rate and profit

Outcomes

- Optimized Markdown timing and pricing
- Predicted sell-through rate per item based on multiple inputs
- Maintain a weighted balance between sell-through rate and profit. The relative importance depends on business requirement.

Trade-off between sale and profit based on different pricing scenarios

HCLS Customer ML Solution

Business Issue

Kidney Injury Assessment for Preclinical Toxicity and Efficacy Studies using Computer Vision

Assess overall kidney injury, by locating and scoring all glomeruli each to a pre defined injury class

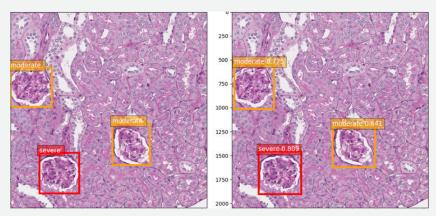
Data

Digital scanned kidney slice images, with annotation of glomeruli including location and injury class information, from customer's diabetic study of mice kidneys.

Machine Learning approach

• Single Shot Multibox Detection (SSD), that detects objects in images, and the objects are categorized into one of the classes in the pre defined collection.

- Detection results were used to enable delivering faster time to scientific insight
- Assist manual assessment by increasing accuracy, reducing human errors and bias
- Reduce operational cost and free up pathologist



Ground Truth

Object Detection

Media & Entertainment Customer ML Solution

Business Issue

Automatic Event and Game Tagging

Identify events in gameplay in live/near real-time and past games, to alleviate human needs to log and retrieve key events/replays when prepping for broadcast and analysis

Data

- Past 3 seasons of player tracking data from all games
- Metadata on key events, players and games

Machine Learning Approach

- Replay retrieval through linear optimization, dynamic time wrapping and ML nearest-neighbors
- Event tagging using combination of multiple Deep Neural Network architectures including novel fully-convolutional networks and inception style towers

- Used to alleviate human labor as detection of game events in near-real time reached human level accuracy (
 97% overall accuracy across all games)
- ML models able to parse tens of thousands of historic plays and rank relevant plays for breakdown and viewing

Manufacturing Customer ML Solution

Business Issue

Automated Visual Inspection

Use **Computer Vision** to augment existing visual inspection during quality control and product grading processes

> Data

- Visual images of products taken during standard inspection process, including RGB and multispectral
- Failure/non-failure label across entire set of images OR
- Label on different types of defects or different product grades across entire set of images

Machine Learning approach

Convolutional Neural Network (CNN) trained on Sagemaker and deployed to **IOT devices**. Leverages **Transfer Learning** with existing pre-trained CNN networks such as ImageNet

- Results were used to assist manual inspection by increasing accuracy and speed of human inspection for both quality control and product grading
- Results could also be used to complement on-going root cause analysis

Telecom Customer ML Solution

Business Issue

Roaming fraud detection

Detect and prevent roaming fraud in mobile telecommunication network using deep learning

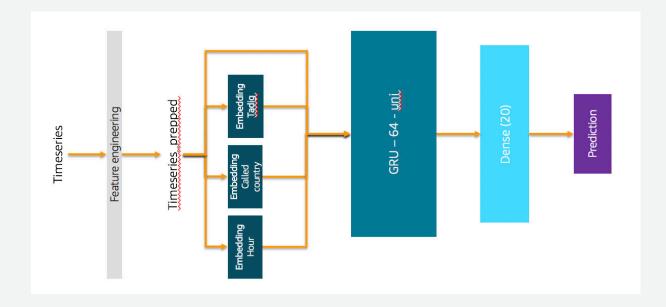
> Data

- 350Gb of historical roaming data (standardized across the industry)
- 3500 example cases of identified roaming fraud

Machine Learning approach

- Glue data preprocessing pipeline
- Multi-modal Recurrent Neural Network model

- Increased the volume of detected fraud by 300% (from 300 to 1200 cases per month)
- Reduced the time to detection by 80% (from 10h to 2h)



Questions?

Thank you!

Brad Kenstler

