Fujifilm's 7th Annual Global IT Executive Summit October 7 – 10, 2015

A peek into the future (The future of Tape)

Dr. Mark Lantz Principle Research Staff Member, Manager Advanced Tape Technologies IBM Research - Zurich

Excerpts from IBM EDGE May 11-15, 2015

© Copyright IBM Corporation 2015 Technical University/Symposia materials may not be reproduced in whole or in part without the prior written permission of IBM.

- Introduction: The role of tape in the era of big data
- The Future of Tape
 - Tape areal density trends and future scaling potential
 - New world record tape low cost particulate tape areal density demo of 123 Gb/in² (IBM FujiFilm collaboration)
 - Technologies enabling the 123 Gb/in² demo
 - Tape technology roadmap
- What About the Other Storage Technologies?
- Investing in the Future
- Conclusions

1

The data deluge

Source: D. Anderson, 2013 IEEE Conf. on Massive Data Storage

Information Creation and Available Storage 1,800 Information Created 1,600 Available Storage, 2007 1,400 Exabytes 1,200 Tape 21% 22% Other 1,000 1% Available Storage Disk 800 56% 600 264EB 400 200 0 2010 2005 2006 2007 2008 2009 2011

80% of all files created are inactive – no access in at least 3 months!

Tape advantages for long-term storage

- Very energy efficient: no power needed once data is recorded
- Very secure:
 - Data is inaccessible when cartridge is not mounted
 - Drive level encryption
 - Portable
- Very long expected media lifetime (30+ years)
- Very reliable: Typically no data loss in case of drive failure
- Main net advantage of tape for archival storage is cost

Energy and Storage Systems (1PByte of Data for 1 yr)

Recent studies from the Clipper Group:

4

- Continuing the Search for the Right Mix of Long-Term Storage Infrastructure – A TCO Analysis of Disk and Tape Solutions (15 July 2015) Report # TCG2015006
- 2) The Impact of LTO-7 on The TCO of Long-Term Storage (15 Sept. 2015) Report #TCG2015008

Investigate 9 year TCO of a 1PB archive that grows to 52 PB (55% CAGR)

Major Finding: 6.7x TCO advantage of LTO Tape of Disk

HDD Areal Density Scaling:

Noise and Magnetic Media Structure

Information is encoded in transition edge. Large grains \rightarrow media noise To shrink the size of a bit, we need to shrink the size of the grains

⁶ If grains become too small, magnetic state is unstable \rightarrow superparamagnetic effect

The Superparamagnetic "Limit"

Magnetic Media "Trilemma":

Technologies to go beyond the superparamagnetic limit:

- Two dimensional magnetic recording (TDMR)
- Heat Assisted Magnetic Recording (HAMR)
- Microwave Assisted Magnetic Recording (MAMR)
- Bit Patterned Media (BPM)

7

Magnetic tape (r)evolution

Product / Year:	IBM 726 /1952	LTO7 / 2015	TS1150 /2014	Demo 2015
Capacity:	2.3 MBytes	6 TBytes	10 TBytes	220 TBytes
Areal Density:	1400 bit/in ²	4.28 Gbit/in ²	6.7 Gbit/in ²	123 Gbit/in ²
Linear Density:	100 bit/in	485 kbit/in	510 kbit/in	680 kbit/in
Track Density:	14 tracks/in	8.83 ktracks/in	13.2 ktracks/in	181 ktracks/in

19.8 cm

HDD vs. Tape Areal Density Scaling:

(Source: INSIC 2012-2022 International Magnetic Tape Storage Roadmap)

Demo Technologies

Focus on aggressive track density scaling

• Require:

- dramatic improvement in track following \rightarrow enables track width reduction
- reduce reader width from a few microns to 90 nm
- Ultra narrow reader results in a dramatic loss in read back signal that must be compensated for with
 - improved media technology → require improved writer technology
 - improved signal processing and coding
 - improved reader technology

Servo pattern design for high areal density demo

Main design goal: nm-scale positioning fidelity

- Increased azimuth angle ⇒ increased resolution
- Increased pattern density ⇒ increased servo bandwidth and resolution

estimate

Synchronous servo channel

- Servo channel decodes the readback signal from the servo pattern and provides position information to the track follow control system
- Servo channel optimized for p-BaFe → improved resolution
- Optimized servo channel in combination with advanced BaFe media formatted with the 24° demo servo pattern provides nanoscale position information

Servo readback signal LPOS 100 Servo symbols signal Optimum nterpolation/ symbol 50 Amplitude correlation detection Reliability **Fixed clock** 0 estimate frequency Timina--50 base reference -100 Lateral-position Acquisition, 0 500 1000 1500 estimate Sample monitoring, and control Tape velocity

Servo channel

New H∞ track-follow control system

Key features

- Prototype high bandwidth head actuator
- A speed dependent model of the system delay is used for control design
- The tape speed is used as a parameter to select the controller coefficients
- Disturbance rejection is enhanced at the frequencies of the tape path disturbances

High Bandwidth Actuator

© Copyright IBM Corporation 2015

Prototype tape transport & hardware platform

- Precision flangeless tape path with grooved rollers & pressured air bearings to minimize disturbances
- TS1140 electronics card for reel-to-reel control and analog front end
- FPGA Board: System-on-Chip (SoC)
 -> Servo channels
 - -> Microprocessor for synchronous trackfollow (TF) servo controller

FPGA Board

- Track width computation based on measured position error signal: PES (INSIC method)
- σPES = standard deviation of position error signal: measure of track following fidelity
- Track width = $2^*\sqrt{2} * 3^*\sigma$ PES + Reader Width

Key technologies for advanced tape media

- 1. Fine magnetic particles with high coercivity \rightarrow archival lifetime
- 2. Smooth surface
- 3. Perpendicular orientation of magnetic particles

	Metal particle (MP)	Barium ferrite (BaFe)			
Shape	Passivation layer	magnetization axis			
	Acicular	Hexagonal platelet shaped			
Origin of magnetic energy	Shape anisotropy	Magneto-crystalline anisotropy			
Material	FeCo alloy	BaO(Fe ₂ O ₃) ₆ Oxide			
Passivation layer	Needed	Not needed			

- The magnetic properties of BaFe particles are NOT affected by its shape.
- BaFe particles do NOT need an oxide passivation layer because it is an oxide.
- The size of BaFe particles can be reduced while maintaining high coercivity.

Metal particle vs. Barium-ferrite particle

TEM image of fine Barium-ferrite particles FUJIFILM

Latest MP Volume :2850 nm³ coercivity:189kA/m(2380Oe)

Demo Tape BaFe Volume : 1600 nm³ coercivity: 223kA/m(2800Oe)

The volume of barium ferrite particle used in the demo tape is 45% smaller than the latest MP, reducing media noise and improving SNR

Barium ferrite particles are well isolated and packed with high density.

- The coercivity metal particles smaller than 3000nm³ decreases with size
- The coercivity of barium ferrite particles can be tuned independently of size enabling small particle media with long archival lifetime
- BaFe particles as small as 1000nm³ have been developed indicating the further scaling potential of BaFe tape

Reduced surface roughness of demo tape increases the media SNR

The perpendicular orientation of BaFe particle provides a strong increase in SNR

23

Perpendicular orientation

Random orientation (TS1140 JC and TS1150 JD tape)

Read/write performance

The combination of small particle volume, smooth surface and perpendicular BaFe particle orientation provide a major increase in SNR.

Enhanced Write Field Head Technology

Magnetic Media "Trilemma":

IBM developed a **new high moment** (HM) layered pole write head that produces much larger magnetic fields enabling the use of smaller magnetic particles

Increasing media coercivity

© Copyright IBM Corporation 2015

 10^{-3}

26

4.10⁻² at the output of the detector • With EPR4 detection 4.10⁻² byte erro

- With EPR4 detection 4.10⁻² byte error rate ≈ 10⁻² bit error rate
- Require SNRa ≈ 10.5 dB at the input of the detector to achieve a raw bit error rate < 10⁻² at the output of the detector

10⁻⁵ N1=240 t1=5 N2=192 t2=12 10⁻¹⁰ undec C1-01 C2-01 10⁻¹⁵ C1-o2 C2-o2 C2-o3 capacity 10⁻²⁰ 10⁻² 10⁻¹

channel byte error rate

 A user byte-error rate of 10⁻²⁰ can be achievable using two C1-C2 iterations with a byte error rate of ≈ 4·10⁻² at the output of the detector

 Data
 C1 ECC becoder
 C2 ECC Decoder

 C2 Parity
 C2 Parity

byte error rate

10⁰

Recording performance of BaFe with High moment writer & 90 nm GMR Reader

Summary of demo results

> Advanced Perpendicular BaFe medium

- Linear density = 680 kbpi w/ 90 nm reader (single-channel recording)
- ➤ 1-sigma PES = 5.9 nm,
- Track density = 181 ktpi (track width = 140 nm)

Areal recording density : 123 Gb/in²

61x LTO6 areal density

 \rightarrow 220 TB cartridge capacity ^(*)

This demonstration shows that tape technology has the potential for significant capacity increase for years to come!

(*) 220 TB cartridge capacity, assuming LTO6 format overheads and taking into account the 48% increase in tape length enabled by the thinner Aramid tape substrate used

INSIC 2012-2022 Tape Roadmap

Table 1: 2012 Tape Technology Roadmap Detail.

Parameter/Year	2012	2014	2016	2018	2020	2022		
1. Capacity (TB)	4	8	16	32	64	128	41.42%	per year
2. Data rate per channel (MB/sec)	11.2	13.8	17.0	20.9	25.8	31.8	11.00%	per year
3. Total data rate (MB/sec)	270.0	405.0	<mark>607.4</mark>	911.0	1366.5	2049.6	22.47%	per year
4. FC Speed Roadmap (MB/sec)*	3200	6400	12800	12800	25600	25600		
5. Number of channels	24	29	36	43	53	64	10.33%	
6. Tape thickness (μm)	6.00	5.53	5.10	4.70	4.33	3.99	-4.00%	per year
7. Data capacity reserve	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%		defect reserve
8. Tape length that is recordable (meters)	867	941	1,021	1,107	1,202	1,304	3.90%	winding reserve
9. Tape length total (meters)	902	979	1,062	1,152	1,250	1,357	4.17%	
10. Track density (TPI)	6,506	9,773	14,787	22,498	34,393	52,791	23.29%	per year
11. Linear bit density (KFCI)**	467	545	635	741	864	1,008	8.00%	per year
12. Areal density (Gbits/inch ²)	3.04	5.32	<mark>9</mark> .39	16.67	29.73	53.22	33.15%	per year
13. Tape speed (m/sec)	6.4	6.6	6.8	7.0	7.3	7.5	1.63%	
14. Tape width (mm)	12.65	12.65	12.65	12.65	12.65	12.65		
15. ECC and formatting overhead	24.00%	21.84%	19.88%	18.09%	16.47%	14.99%	<mark>-4.60</mark> %	per year
16. Servo track and layout overhead***	18.46%	16.59%	15.02%	13.67%	12.50%	11.49%	-7.00%	per year
17. Number of passes to write a tape	110	138	175	222	283	361		
18. Time to fill a tape (minutes)	247	329	439	585	781	1,041	15.47%	
19. Number of passes to end of media life	30,300	33,406	36,830	40,605	44,767	49,356	5.00%	per year
20. Number of data tracks	2,642	4,060	<mark>6</mark> ,258	9,673	14,988	23,272	24.31%	per year
21. Bit Aspect Ratio (BAR)	88	67	51	38	29	22	-13.12%	per year

INSIC Roadmap available at: http://www.insic.org/news/2012Roadmap/news_12index.html

Fujifilm's 7th Annual Global IT Executive Summit October 7 – 10, 2015

What About the Other Storage Technologies?

Ed Childers STSM, Manager Tape and LTFS IBM Storage Development, Tucson, AZ

Excerpts from IBM EDGE May 11-15, 2015

© Copyright IBM Corporation 2015 Technical University/Symposia materials may not be reproduced in whole or in part without the prior written permission of IBM.

Storage Technologies

© Copyright IBM Corporation 2015

Ref: http://www.storageacceleration.com/author.asp?section_id=3670&doc_id=274482

Optical Roadmap – A Squeeze Play

					CD-ROM	DVD-ROM	DVD+R	BluRay	BluRay	BluRay	BluRay	BluRay	
					1982	1995	2004	2006	2014				
					ECMA-130	ECMA-267	ECMA-364	BD-ROM	BD-R	BD-R	BD-R	BD-R	
	ser												
	Ľ		GB		0.682	4.70	8.55	25	100	300	500	1000	
	금		Layers		1	1	2	1	3	6	6	6	
	Bue		Capacity / Layer		0.682	4.70	4.27	25.00	33.33	50.00	83.33	166.67	
	ele												
	/a/		Areal Density (User)	Gb/in^2	0.41	2.77	2.52	14.73	19.64		49.11		
	5		Areal Density (Raw)	Gb/in^2	1.44	6.54	5.95	26.72	25.23	37.85	37.85	37.85	
	le	•											
	Smaller Wavelength Laser					Red	BI						
			Capacity (per layer)	factor		6.89	0.91	5.32	1.33	1.50	1.67	2.00	
>													
a			Optical	factor		2.35	1.00	5.17	1.00	1.00	1.00		Improved
inu			Track Squeeze	factor		1.41	1.00	1.02	1.00	1.42) 1.00	1.00	Improved Channel?
ont			Bit Squeeze	factor		1.37	0.91	0.78	0.94	1.05	1 00	1.00	Ondriner:
8	H		Channel Eff	factor		1.09	1.00	1.33	1.41	1.00	1.67	2.00	
e e			Format Eff	factor		1.37	1.00	0.98	1.00	1.00	1.00	1.00	
sca			Disk Area Eff	factor		1.02	1.00	1.00	1.00	1.00	1.00	1.00	Multi-state Recording
С О			Total	factor		6.89	0.91	5.36	1.33	1.50	1.67	2.00	TRECOLUTIN
Can not be scaled continually		Spot squeeze (ie. areal density increase not due to smaller spot				Less channel overhead				on	Elimination of guard band on write, 19% of spot overwriting adjacent trk, cancellation technology		
ö	size or improved format efficiency						PRML channel & modulation, 6% loss in LD due to layers						

Storage Technologies Areal Density Trends

Engineers Solve Technology Problems but...

Market forces drive business models

Fujifilm's 7th Annual Global IT Executive Summit October 7 – 10, 2015

Investing in the Future

Ed Childers STSM, Manager Tape and LTFS IBM Storage Development, Tucson, AZ

Excerpts from IBM EDGE May 11-15, 2015

© Copyright IBM Corporation 2015 Technical University/Symposia materials may not be reproduced in whole or in part without the prior written permission of IBM.

- The Problem
 - (ie. where to aim)
- What's Required?
 - (in what do we need invest?)

- What's the return?
 - (it's about \$)

Session objectives

- The Problem
- Data use shift
 - Data is an asset
 - It needs to be accessible to have value
- Storage Market Transition / Disruption
 - Traditional Scaling breaking down
 - Consumer Volume Shifts
- What's Required?
- The Bottom Line

Demands on IT, Storage, and Shift to Cloud

Underneath, more to the point

Fundamentally – It's a Storage Scaling Problem

Session objectives

• The Problem

What's Required?
 Investments in:

 Tape Technology
 Tape Product Delivery
 Software Stack
 LTFS

• The Bottom Line

IBM Tape Investment Strategy

- Tape Technology Pipeline IBM Development & IBM Research
 - Large research investment Zurich and Almaden laboratories
 - Technology demonstrations 220 TB in 2015
 - Substantiates roadmap thru 2025
 - Drive technology value into Enterprise, leverage into LTO when industry is capable
- TS1150 Enterprise Tape product line
 - Reliability, Performance and Function differentiation
 - Enterprise media cartridge with reuse
 - Enterprise Automation compatible
- LTO Midrange product line
 - Open Tape Streaming product family
 - Full Automation Product support 1U to HD Frames
 - TPC Consortium driven development/function
- Software LTFS
 - IBM invented, open source, open standard
 - Provides file system support, integration of tape into Spectrum Scale

Edge2015

IBM – Tape Product Innovations

- Timing-Based Servo and Surface control guiding
 - TBS revolutionized tape track following with 10X precision of analog patterns
 - Surface control guiding reduces frequency of tape guiding transients for robust track following
- Compact tape path with flat head geometry contour and flangeless rollers
 - Flat head design reduces friction head/media wear improved
 - Flangeless tape path eliminated edge contact with the tape improved media life
 - This enables short tape path reduced complexity, friction, and improved access
- GMR head technology with protective overcoat
 - 3X signal amplitude enabling track density and longer head life
 - TMR on way in future
- Multi-level ECC with NPML(LTO) and DD-NPML(TS1140) channels
 - Multi-level Reed-Solomon Error Correction codes with End-to-End CRC
 - Tape format interleaves data both vertically and longitudinally on the media
 - Advanced self-optimizing channel technology for maximum readback reliability
 - Full on-the-fly decryption/decompression
- Barium Ferrite Tape Media Collaboration
 - Collaboration with Fujifilm on media technology advancements

Breaking Down Storage Islands

Spectrum Storage – Unlocking Data, Enabling Lower Costs

Spectrum Storage

Basic LTFS

						x
😋 🕞 🗕 🚺 🕨 Computer	r ▶ LTFS Demo (F:) ▶ Images ▶ IBM_History		▼ 4 ₇	Search IBM_History		P
Organize 🔻 🔚 Preview	w 🔻 Print Burn New folder				•	0
⊿ 🔆 Favorites	Name	Date modified	Туре	Size		
📃 Desktop	3_8_inch_chip	11/9/2010 2:09 PM	JPEG image	34 KB		
🐌 Downloads	DM_IBM_S360	11/9/2010 2:09 PM	JPEG image	3,154 KB		
🖳 Recent Places	IBM_29_Punch	11/9/2010 2:09 PM	JPEG image	45 KB		
	E IBM_1800	11/9/2010 2:09 PM	JPEG image	32 KB		
4 📷 Libraries	E IBM_PC_5150	11/9/2010 2:09 PM	JPEG image	315 KB		
Documents	IBM_Series_1	11/9/2010 2:09 PM	JPEG image	32 KB		
Music	IBM_System3	11/9/2010 2:09 PM	JPEG image	3,336 KB		
Pictures	IBM360-65-1.corestore	11/9/2010 2:09 PM	JPEG image	942 KB		
Videos	SAGE	11/9/2010 2:09 PM	JPEG image	35 KB		
	StretchConsole	11/9/2010 2:09 PM	JPEG image	47 KB		
▲ I Computer	System_360	11/9/2010 2:09 PM	JPEG image	28 KB		
Local Disk (C:)						
LTFS Demo (F:)						
D 👽 Network						

Session objectives

≻The Problem

Why Spectrum Archive?

Breaking Down Storage Islands

➤ The Bottom Line

Lower costs for cold data while maintaining access

Tape & HDD side by side Setting up the comparison

20PB Static Archive

		2.5	2.5TB LTO 6 @ \$35		6TB HDD @ \$235	
			LTFS		HDD	
	Component	\$/TB	14.00		39.17	
	Hardware	\$/TB	21.26		63.95	
	(raw)		7 frame TS4500 24 drive, 8K carts		74 45 6TB Backblaze like pods	
\$0.14 /KWH \$200 / sq ft/yr	System (raw)		LTFS		HDD	
		3 years \$/TB/mo	0.71		2.72	
		5 years \$/TB/mo	0.48		2.00	
		8 years \$/TB/mo	0.35		NA	
			284 TB/sq ft		66TB/sq ft	
LTFS	Solution (user)		LTFS	Glacier	HDD	
		3 years \$/TB/mo	1.79	10.00	8.29	
		5 years \$/TB/mo	1.23	10.00	6.13	
+LTFS \$ @ 2x redundancy +0\$ SWIFT @ 3x redundancy \$2600/mo admin/maint		8 years \$/TB/mo	0.91	10.00	NA	
				Storage Only – no R/W No connectivity \$	© Copyright IBM Corporation 2015	

20PB Static Archive – Looking Forward

		6.0TB LTO 7 @ \$35		5	12TB HDD @ \$23	
			LTFS		HDD	
	Component	\$/TB	5.83		19.58	
	Hardware	\$/TB	10.11		32.00	
	(raw)		4 frame TS4500 24 drive, 8K carts		37 45 12TB Backblaze like pods	
\$0.14 /KWH \$200 / sq ft/yr	System (raw)		LTFS		HDD	
		3 years \$/TB/mo	0.34		1.38	
		5 years \$/TB/mo	0.22		1.01	
		8 years \$/TB/mo	0.16		NA	
			660 TB/sq ft		221TB/sq ft	
LTFS			LTFS	Glacier	HDD	
Server Denstack	Solution (user)	3 years \$/TB/mo	0.92	10.00	4.13	
		5 years \$/TB/mo	0.63	10.00	3.03	
+LTFS \$ @ 2x redundancy +0\$ SWIFT @ 3x redundancy \$2600/mo admin/maint		8 years \$/TB/mo	0.47	10.00	NA	
				Storage Only – no R/W No connectivity \$	© Copyright IBM Corporation 2015	

- The era of big data is creating demand for cost effective storage solutions
- Tape remains the most cost-efficient and greenest technology for archival storage and active archive applications
- Tape has a sustainable roadmap for at least another decade
 - 123 Gbit/in² areal density demo shows feasibility of multiple future tape generations
 - Potential exists for the continued of scaling of tape beyond 123 Gbit/in²
- The cost advantage of tape over HDD and optical disk will continue to grow

