

Agenda

- 1. Introduction
- 2. Primer to WDC (HGST/SanDisk)
 - A. HDD Technology
 - B. Flash Technology
- 3. Competitive Media Comparison
- 4. A System Level View
- 5. The Future (3+ years)
- 6. Summary

About Western Digital Corporation

TRUST

- · A data storage leader
- "Under the hood" of major OEMs
- Millions of devices shipped annually

VALUE

- Among the highest SSD/HDD MTBF rates
- Certified solutions (Msft, Oracle, VMware)
- Single source for storage devices & systems

INNOVATION

- 12,000+ active patents, 500 new/yr
- \$2.5 billion invested annually in R&D
- · Leader in Open Community initiatives

Broad Storage Portfolio

©2016 Western Digital Corporation or affiliates. All rights reserved.

Primer to WDC Media Offering (HDD)

Capacity targets next 3 years

12TB > 14TB > 20TB+

Primer to WDC Media Offering (Flash)

Primer to WDC Media Offering (NVMe 96 Layer, QLC)

Legal: The following are technology projections and not a specific product offerings

Key Characteristics

Capacity: 100TB per 2.5"/15mm

Interface: PCIE/NVMe

Read/Write IOPS: 100K/25K (Large Seq Block)

WORM (Write Once): 15+years Write Seldom (<60): 10+years

Throughput (R/W): 4GB/s up to 1GB/s

Power (goal): 12w(Full write), 6-9w (mixed workload), less than 2w (Idle)

** Power Management can reduce avg power use significantly

Competitive Comparison (HDD vs SSD)

Spec	HDD (14TB)	LTO8	96L QLC	Ratio SSD
Capacity	14TB	12.8TB	100TB	7x / 7.8x
Uncompressed W	180MB/s	470MB/s	1GB/s	5x, 2x
Uncompressed R	200MB/s	470MB/s	4GB/s	27x, 10x
Power Operating	7w	*	9w (mixed)	
Power Idle	5w	0	2w**	

^{*} Based on tape drive, controller and robotics

^{**} Based on maintenance and potential Power Management

A System Level View

Rack Level Comparison (40U Usable rack space)

- HDD Rack 4U Server w/ 60HDD
- Tape –Quantum Scaler i6000 extrapolated using LTO8
- QLC Rack 1 2U Server + 3x 2U PCIE Storage Chassis (96 SSD in 8U)

Spec	HDD	Таре	QLC
Capacity No Compression	8.4PB	10.5PB	48PB
Throughput/W	108GB/s	*Based on Drives	480GB/s
Throughput/R	120GB/s	*Based on Drives	2.4TB/s
Throughput/M	12GB/s	*Based on Drives	*Based on Mix 400GB/s-2TB/s
Power Mixed	6KW	*	5KW
Power Idle	4.8KW	*	1.8KW

Network	Throughput (12 Uplinks)
10Gb	9.6GB/s
40Gb	36GB/s
100Gb	96GB/s
400Gb	384GB/s

A System Level View

Limiting Factors

- Network Bandwidth
 - · All media can scale on the compute side to exceed Network Bandwidth @10Gb
 - Transition to 100Gb and faster, Only SSD justify /can fully utilize
- Software (not Optimized for Flash)
 - Object Based Erasure Coded/Compressed data to fully utilize and keep data
 - Resilient over 15+ years

Deployment Model

- As the density increases, rack level distribution becomes key to realizing throughput.
 - New Models distributing 'Archive' across active racks (Top of Rack Archive, Top of Rack Storage)
- At 7x capacity, almost comparable power use (minus real deep archive/vaults)
 - QLC may expand where flash can be utilized
 - 10-15yr TCO on 48PB raw / Rack cost

Risk

- Limited NAND Fabrication Capacity
 - · Exabyte level as we enter Zetabyte scale world
 - · Choice of Fast Data or Big Data

© 2016 Western Digital All rights reserve

TCO Example: 2015 Infiniflash 8TB Flash Cards

Food for thought

3.The Future (3+ years)

- Capacity Growth
 - SSD Vendors now have 3 knobs to turn for capacity
 - Layers (3d Nand)
 - Bits per Cell (1,2,3,4.. Yes more is possible, but with distinct limits)
 - **Lithography (65nm , 3xnm...)
 - Packaging
 - Infiniflash 1st in custom packaging..
 - EDSFF Ruler (U.2 capacity in 1U package)
 - 3.5" Flash drives?
 - Various 'Flash Stick' standards popping up (M.2,others)
- As value of data increases and cost of storage decrease more data will be stored

3. Summary (Thoughts)

- Shifts are not made overnight. Flash + Tape, Flash + HDD + Tape will continue to exist. Ratio and length of retention/data activity will be key... Even a \$0.01/GB difference is equivalent to \$1M at 100 PB, moving to a Zetabyte, new architecture will be key
- As value of data increase and infrastructure cost decrease, trend is showing active data life is increasing from 1-6mo to 3-6 years and capacity of archive data growing
- Flash has limits on its fabrication capacity. Decision must be made on Fast Data Flash, Big Data Flash or Archive/Compliance Flash (QLC)
- The dynamic is changing and it's up to the people in the room to decide how it will change

