

HIGH PERFORMANCE INNOVATION

The Benefits of Tape and How to Maximize It

Nathan Schumann Instrumental, Inc. February 5, 2009

- Introduction
- Storage Scalability
- Error Rates
- Power and Cooling Costs
- MAID
- Data De-duplication
- Tape Performance
- Final Thoughts

Introduction

Copyright (C) Instrumental, Inc. 2009

Tape Sales

- For years many vendors claiming tape is dead
- Many performance obstacles for tape
 - Same is true for disk, but performance is far better understood
- Tape is often the forgotten child
 - Not because it's not critical to the data center
 - It's not understood
- Tape has many advantages over disk, including
 - Hardware compression
 - Hardware encryption

DR Requirements

- September 11th, 2001 changed everything we all know in terms of how DR is viewed
- Large sites now often
 - Backup disk to disk to tape (D2D2T) locally
 - Replicate to DR D2D
 - Backup the replication at DR to tape
- Tape Impact
 - Often more tape is used as multiple copies are used at both sites

Energy Costs

- What company does not have a green data center initiative?
- Power usage is a big issue and of course getting bigger
- Tape Impact
 - Tape is the most efficient storage in terms of power
 - Disk storage is a large part of the power usage profile for many organizations

Tape is Not Passé

- With disk drive density increasing, some see tape technology as passé
 - It is not and will never be we'll review why
- Tape has its places in the tiered storage of every data center
 - From SMB to enterprise
- The argument that tape is not needed cannot stand up to critical analysis
- MAID cannot currently replace tape

Storage Scalability

Copyright (C) Instrumental, Inc. 2009

Limitations are Real

- Storage has not scaled well for decades
- Storage scaling limitations impact system, application design and hardware purchased

Tape Impact

- Storage scaling impacts tape sales
- Tape latency (pick + load + position) is higher than disk by at least 14,400 times
 - This is why some companies are going to D2D backup
- Tape performance and capacity is improving at a higher rate than disk

CPU Versus Disk Scalability

CPU Versus Disk Scalability 1977 - 2008

Copyright (C) Instrumental, Inc. 2009

Seagate Disk History

Tape During the Same Period

->Instrumental

Performance Since 1990

	Disk		AverageImprovementPerformanceSince 1990 xMB/secondTimes		ent 0 x			
	FC/SAS		100		25			
	SATA		70		25			
Таре	Compressed MB/second	Uı	ncompressed MB/second	Compressed Improvement Since 1990 x Times		Uno Im Si	Uncompressed Improvement Since 1990 x Times	
LTO-4	240		120		192		96	
TS1130	360		160		288		128	

Neither disk or tape performance is scaling, but tape is far better

Copyright (C) Instrumental, Inc. 2009

Instrumental Bandwidth Per GB of Capacity

Storage Scalability

- Bottom-line is neither tape or disk is scaling well in terms of bandwidth
- Tape is growing better than disk in terms of capacity and performance

Error Rates

Copyright (C) Instrumental, Inc. 2009

Hard and Soft Errors

->Instrumental

- Disk drive hard error rates (per Seagate)
 - SATA 1 sector per 10E⁻¹⁵
 - SAS 1 sector per 10E⁻¹⁶
 - FC 1 sector per 10E⁻¹⁶
- In 1996 the rate was 1 sector per 10E⁻¹⁴ for enterprise drives
 - Capacity was only 9 GB
- Tape Impact
 - Tape error rate has historically been 2 orders of magnitude better than disk

Enterprise Disk Reliability

	1996	2008	Comparison
Disk Mean Time to Failure	100K hours	1.2M hours	~10x MORE reliable?
(What do RAID vendors see?)	(<50K hrs?)	(~500K+ hrs)	(~10x)
Capacity per disk	9 GB	450 GB	~50x denser
Array Mean Time to Repair (Rebuild time @ 10%)	9 GB / 9.6 MB/sec x 10 = 9,375 seconds	450 GB / 99 MB/sec x 10 = 45,454 seconds	~ 3.2x LESS reliable

Problem 1: Time to repair disk (MTTR) is much worse! Problem 2: This problem gets worse with SATA Problem 3: This problem gets compounded with RAID

Data Reliability

- Not just hardware errors
- Silent data corruption can occur when an error occurs in both the packet and error check
- This results in
 - Undetected errors
 - Miscorrected errors
- Questions now raised
 - Is it in hardware or software?
 - Where is the error originating specifically?
 - What event caused the error?

Undetectable Bit Error Rate

Sustain Transfer Rate Per Second for a Year								
UDBER	0.5 GB/sec	1 GB/sec	10 GB/sec	100 GB/sec	1 TB/sec	10 TB/sec	100 TB/sec	
1.E-21	0.0	0.0	0.0	0.0	0.3	2.7	27.1	
1.E-20	0.0	0.0	0.0	0.3	2.7	27.1	270.9	
1.E-19	0.0	0.0	0.3	2.7	27.1	270.9	2708.9	
1.E-18	0.1	0.3	2.7	27.1	270.9	2708.9	27089.2	
1.E-17	1.4	2.7	27.1	270.9	2708.9	27089.2	270892.2	
1.E-16	13.5	27.1	270.9	2708.9	27089.2	270892.2	2708921.8	
1.E-15	135.4	270.9	2708.9	27089.2	270892.2	2708921.8	27089217.7	

This does not include errors as hardware degrades such as a failing drive and/or controller.

Bit error rates of most channels are 10E⁻¹² and are corrected to 10E⁻¹⁷ for SATA, 10E⁻²¹ for SAS/FC.

Tape uses FC interface today, in the future potentially SAS interfaces, which are less susceptible to silent data corruption then SATA.

Therefore SATA is not a tape replacement unless parity is checked

- Tape Impact
 - Typically the weakest link is not the media, but the channel itself
 - Tape currently uses FC for the channel, potentially SAS in the future, which has roughly 4 orders of magnitude more ECC on the channel than SATA

Reduce Potential Errors

- A number of vendors provide products that monitor tape drives and tapes
 - Companies like Crossroads have products to address tape drive and cartridge errors
 - Monitoring errors and proactively removing tapes from the pool improves reliability
- Tapes have a lifespan just like disk drives
 - Tapes need monitoring similar to SMART monitoring of disks
 - Applications use raw SCSI commands to get tape drive status

Power and Cooling Costs

Copyright (C) Instrumental, Inc. 2009

Power Cost for Disk

- Power has become one of the biggest concerns for the data center
- Data centers are being built where power is located, not where businesses want them
- Power is such a problem that in Virginia AOL is paid by the power company to go on generated power in the summer sometimes
- Google moved to Oregon for power and cooling reasons

Electricity Price Estimates

->Instrumental

Cost Per Petabyte

- **XInstrumental**
 - The cost per Petabyte is
 - LTO-4 native \$357,048.69
 - LTO-4 with compression \$178,524.32
 - Sun 6540 \$3,456,744.79
 - Almost 10x more without compression
 - The 6540 has about 1.8 GB/sec of bandwidth while 20 tape drives native is about 2.4 GB/sec
 - Software is not included in prices and is not cheap
 - http://www.enterprisestorageforum.com/outsourcin g/features/article.php/3722171

Amount of Storage	Drive Count	Watts/Drive	Total KWatts (Drives and Trays)	Cost \$0.10/KW Hour	Yearly Cost of Disks and Trays
4.6 PB	5355	13	195.25	\$19.52	\$171,030.24

Disks always use power if they are spinning

- Power for tape drives in use and robots is comparatively small
 - Even when disks are spun down, the interface to the hardware is powered on

Power Cost for Disk

Tape Impact

- Tape uses virtually no power in comparison to disk
- Power consumption from Quantum LTO-4
 - Idle (no cartridge): 6.4 Watts
 - Standby (with cartridge): 9.5 Watts
 - Typical: 28.8 Watts
 - Max: 30.1 Watts
- Equivalent to 2.3 drives of power

Cooling Cost for Disk

- Number of BTUs required for cooling varies with the disk drives used and capacity
 - 3.5 inch requires more power
 - (16) 1 TB Seagate SATA drives = 169 Watts
 - (16) 450 GB Seagate SAS drives = 277 Watts
 - (16) 2.5 inch 146 GB Seagate SAS drives = 121 Watts
 - The best power density is 1 TB drives at 13 Watts per drive
 - Not enterprise level drives
 - Not fast
 - Not reliable

Cooling Cost for Disk

- Cooling costs about 1.45 the amount of power
 - So the \$171,030.24 is really \$247,993.85
 - The cost will go up since these numbers were generated with \$0.10 KW hour
 - Power usage per GB will drop about 30% with 2.5 inch drives
- Tape Impact
 - Tape require virtually zero cooling
 - Again, operational power consumption is very low

Massive Array of Idle Disks (MAID)

Copyright (C) Instrumental, Inc. 2009

MAID Facts

- MAID schemes power drives on and off based on needs
 - Most MAID devices limit the number of disks that can be powered on at any given time
 - MAID devices are configured as RAID from 3+1 to 8+1 depending on vendor
- With random recalls, some requests might have to wait based on the usage of the MAID device
 - Some MAID vendors allow only 25% of the system to be active at any give time
 - That INCLUDES RAID rebuild

MAID Facts

- MAID generally uses SATA drives which have known reliability issues
 - This increases the chance that the MAID device will be rebuilding rather than servicing I/Os
- MAID does not support hardware compression
 - Compression is done in software
 - Consumes CPU cycles slowing overall performance

MAID Facts

Tape Impact

- Hardware compression and encryption is always preferred to software
- The channels for both SATA and SAS/FC are rated to 10E⁻¹², SAS/FC are corrected to 10E⁻²¹ versus 10E⁻¹⁷ for SATA
- Power and cooling are still cost considerations for MAID
- Host bandwidth is the limiter to the number of tape drives that can be used, not the hardware itself

Data De-duplication

Copyright (C) Instrumental, Inc. 2009

Data De-duplication

- Data de-duplication breaks files into pieces and compares this hash against existing files
- Similar to standard compression, but occurs across many files rather than one
- Concerns
 - Good data on disk, bad read, what is the outcome?
 - Good data in memory, but bad write. How much data is corrupted?
 - Is it possible to find bad data to correct the rest?

Data De-duplication

- Unless vendors provide checksum for both data and hash, there is a risk of data corruption
 - Data Domain and a few others do this
- If placed on less reliable storage what is the risk of a silent data corruption
- Data de-duplication may be better suited for email, rather than enterprise critical data
- Tape Impact
 - Compression occurs on one file at a time reducing the risk of widespread corruption

Tape Performance

Copyright (C) Instrumental, Inc. 2009

Head Strumental

- Stream data to tape
 - Tape drives perform best when streaming data using large blocks
 - Starving the drive will reduce performance due to start/stop of the drive
 - Some drives can slow down in response to incoming data, but not all
- Block sizes
 - Enterprise tape drives use anything from 256 KByte to 2 MByte block sizes

-XInstrumental General

General Tape Performance

- Block sizes, continued
 - Most backup and HSM software are aware of the correct block sizes, but not always
 - Trust, but verify that the application is using the correct block size
 - Too small of a block size, the system will coalesce application I/O requests to form one large request
 - End up spending time forming requests rather than performing I/O
 - This leads to devices being busy when not actually doing valuable work

- Application tape buffers
 - Many applications provide a tunable for the number of tape buffers to use
 - Increasing this circular buffer to multiple MB or GB can help applications queue data more efficiently
 - Having an efficient queue keeps tape drives streaming and performing well

General Tape Performance

- Maximizing tape loads
 - Keep on the look out for tapes that are loaded, but little or no data being written/read from the drive
 - Load/thread/rewind/unload takes a lot of time and effects the overall performance of the tape subsystem
 - Use the tunables in your application to wait for enough data to accumulate before writing

- Backup/Archive Parallelization
 - If your system has multiple tape drives, use them
 - Spread the workload as much as possible over multiple drives to achieve higher overall performance
 - <u>http://publib.boulder.ibm.com/infocenter/iseries/v5r</u>
 <u>3/index.jsp?topic=/rzalw/rzalwtape.htm</u>

Network Performance

Second Second S

- Sites complain about the time to perform backups, but is this the fault of the network?
 - 1 Gbps Ethernet peaks at 100 MB/sec
 - LTO-4 without compression is faster leading to starvation of the drive and overall slowdown
- Tapes try to operate at fastest speed possible and will slow down to match the incoming data
 - If a drive is rated (in MB/sec) at 120, 90, 60 or 30 and data rate is 59 MB/sec, the drive will likely operate at 30 MB/sec
 - Some vendors offer variable speed drives

Network Performance

- Network performance and design impact tape performance
 - This is not the fault of the tape drive or media

Network Performance

- High latency networks over WANs are another problem, similar to network bandwidth
- Again, the drive will operate at the slowest data rate to attempt to keep data streaming
- Bottom-line
 - Network performance is just as important for performance as other components
 - Think of the systems ability to ingest data over the network before blaming the tape drives

Server Performance

- Servers have two performance bottlenecks
 - Memory bandwidth (memory to PCI bus)
 - PCI bus bandwidth
- Some servers currently limit memory bandwidth to less than 10 GB/sec
 - To read or write to tape you must also be reading and writing to a file system
 - This means that the total bandwidth is doubled
 - 2 GB/sec to tape means a minimum of 4 GB/sec of memory bandwidth

Server Performance

- Historically memory bandwidth has been one of the bottlenecks that impact tape performance
 - Also affects other components in the I/O path
- Small servers can limit tape performance with a slow PCI bus
 - Each PCIe 1.1 bus supports 2.5 GB/sec of I/O
 - Each slot has a lane count and each lane is 250 MB/sec
 - Slots have either 1, 2, 4, 8 or 16 lanes
 - PCIe 2.0 doubles performance for buses and lanes

Server Performance

Herein Strumental

- Small servers may not have enough PCI bandwidth to support bandwidth requirements
- Bottom-line
 - Server sizing is critical to a well performing backup or archive system
 - Must have enough PCI slots for the job at hand
 - Remember memory bandwidth is double the rate when using tape with a file system
 - Be realistic when looking at the theoretical performance of a server

File System Performance

- Direct I/O is important for tape performance
 - Direct I/O bypasses kernel paging and writes/reads data directly from application buffer to storage
 - Having to hop from tape to kernel pages and finally to the file system, vice versa for writes
 - This can DRAMATICALLY reduce performance
- File system block sizes affect how data is written to tape
 - File system block sizes that are smaller than the tape drive will result in extra time coalescing buffers to form large requests

File System Performance

- File system block sizes affect how data is written to tape
 - Read-ahead on the RAID only works if the files are sequentially allocated
- Bottom-line
 - A poorly performing file system will negatively impact tape performance
 - Tape drives are simple and easy to understand
 - Blame shifts to tape, but what's further up the I/O data path that could be affecting performance?

Final Thoughts

Copyright (C) Instrumental, Inc. 2009

The Future of Tape

- Tape density is growing and has been growing at a higher rate than disk density
 - The trends continue to show this
- Tape is green
 - Power managed disk storage is not enterprise quality yet and has severe limitations
- Cost in terms of device usage and cooling
 - The cost to power and cool a tape device is negligible compared to disk
 - Power is much more important now and will continue to be in the future

Success of Tape Depends On

- Tape is the first choice for shipment
 - Shipping disk drives is scary and expensive
- Tape should be used differently than disk
 - Inherent in the technology
- Good architecture and tuning
 - Without either tape looks bad and disk better

Thank You

Copyright (C) Instrumental, Inc. 2009