

Using tape for a competitive advantage

How to bring value to your most important customer

What is valuable to the archive customer

- Capacity
 - Massive amounts of data
- Mount performance
 - Get the tape to the drive every time, as fast as possible.
- Read / Write
 - Get the data onto tape as fast as possible.
 - Get the data off of the tape as fast as possible.
- Long term use
 - Support legacy tape system, LTO, TS and T10K.
 - Support the product for 10+ years
- Easy to service
- Cost

Methods used for improving customer value

- Value innovation
 - Find the most valuable customer
 - Tune features to customers' attribute
- •Lean
 - 5 whys
- Direct customer feedback
 - Build what the customer wants

TFinity ExaScale

- Up to 641 PB raw with LTO-8
- Flexible Configurations
 - 3 to 44 frames
 - 100 to 53,460 LTO / 40,680 TS slots
 - 2 to 144 tape drives
- LTO-6, LTO-7, LTO-8, TS1150, TS1155 Technology
- T10K legacy support for migration
- Dual robotics **for** availability and performance
- 24 x 7 x 365 operations

SPECTRA

• Upgrades in 9 or 10 slot increments

TFinity ExaScale

Two ways to make things faster – move faster, do less. Lean principle

TFinity – High Performance Transporter

- High Performance Transporter
 - Evolutionary Progression in performance, and reliability.
 - Completely new robotics and firmware.
 - Designed for 2,000,000 MCBF.

	First Generation Transporter	High Performance Transporter
TeraPack Drawer Pick/Put	7 seconds	< 1 second
Slot Pick	3 seconds	.5 seconds
Slot Put	3 seconds	. 5 seconds
Picker Head Rotation	1 second	.25 seconds

Hardware / Software interface

TFinity Zoning Optimizations

- The TFinity Bluescale software has been modified to include zoning information in the Read Element Status response.
- This allows the storage software to keep both robots working optimally in their zone without any robotic contention.

SPECT

TFinity TeraPack® Affinity

- Do as many tape moves as possible from the same TeraPack to increase overall robotic performance.
- By giving the storage software the TeraPack barcode associated with each tape barcode the software can sort the internal move queue to consolidate all tape moves within a given TeraPack to happen in order.

SPECTRA

ISV + Spectra Logic Mount Rate percentage

Media

Write performance

Value Innovation (Find the most important customer)

Move important features up, un-important down

Reduced Error Rates and More Consistent Media

- Rewrite Error Rate blocks that have to be rewritten
- More Rewrite Errors mean less capacity and loss of performance
- Users want consistency

SPECTRA

TAOS[™] Read Performance

Time-based Access Order System (patent pending)

Evolution of reading a disk drive

- Reads were done one cylinder at a time.
 - Usually one read per rotation
- Disk driver/OS Strategy Routine
 - Disk drivers began to understand the disk layout and optimize the order of the read.
 - Disk Driver Strategy Routine would re-orders read to optimizes heads/Sectors/Cylinders
- Strategy Routine moved into the disk drive
 - Chained commands given to drive
 - Drives buffers the data and does multiple reads per rotation
 - No knowledge of disk geometry

Why block file locate is important

- ISV (HPSS/DMF) software see tape as one long sequences of blocks
- Modern tape uses wraps
 - Each tape generations changes number of wraps (Single Pass)
 - Track count per band also changes
- An LTO 8 tape is almost 200 km long when read from beginning to end
- TS has Recommend Access Order
 - Read in the best restore order is only available on Enterprise drives, Not on LTO

Example of 6 files recalled

Linear recalls are very inefficient

Ordered recalls based on LPOS much more efficient

SPECTRA

Crossing Bands Is Considered

Media and Drive Wear Reduction Testing with TAOS

- A test was performed with 100 files with a file size between 1-100MB:
- TAOS Meters of Tape Across the Drive Head: 2,470
- Unordered Meters of Tape Across the Drive Head: 31,878
- That's a ~13x reduction in meters of tape. Or 8.4% of the original meters of tape.
- Spectra currently estimates that TAOS will reduce tape and drive wear by ~10X on media read operations when used in conjunction with HPSS 7.5 or later
- Releasing with major archive packages

Other direct customer feedback

Tri-media - Three Different Tape Technologies in the same library

- Spectra's ExaScale Edition tri-media feature now allows migrating or integrating your existing T10K media & drives.
- The ExaScale Edition TFinity supports mixed media environments with LTO, TS, and T10K.
- Spectra Logic offers a migration program where your existing T10K drives can be resledded into TFinity drive sleds and then used for recalling data from existing T10K media, reducing initial migration costs.

SPECT

Custom Skins

Thank you