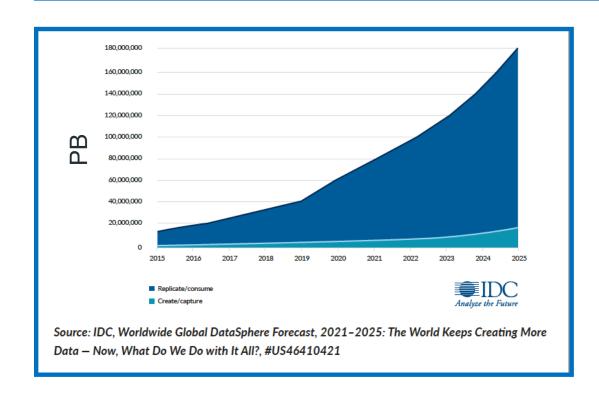


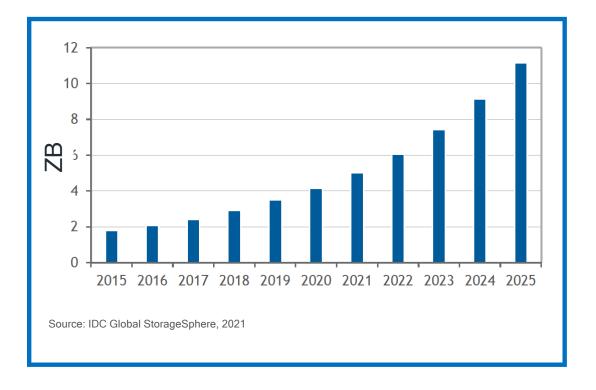
Scaling up from Data Lakes to Data Oceans

STEFFEN HELLMOLD

DNA Data StorageMarket Opportunity

Data Creation & Storage Continues to Grow Exponentially

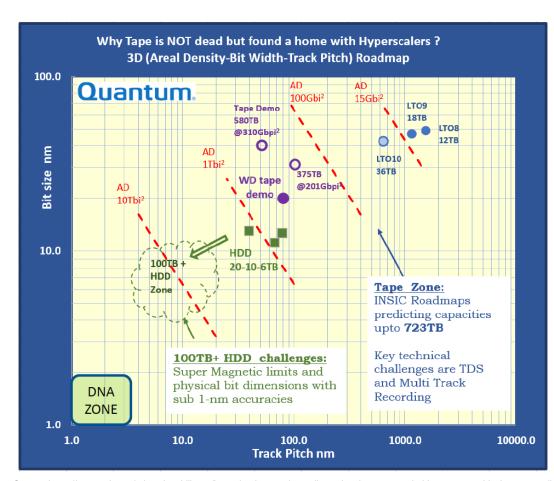

Data created, replicated and consumed:


2021: 80 ZB

2025: 180 ZB

Data storage worldwide capacity:

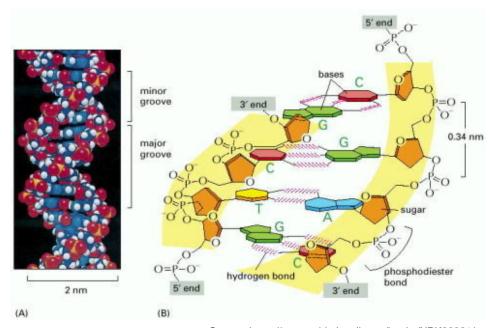
2021: 5 ZB 2025: 11 ZB



Т

Challenges of Current Data Storage Technologies, Scaling et al.

- Increasing physical scaling challenges
 - Magnetic storage scaling is slowing down
- Supply can't keep up with demand
 - ZB-scale supply gap in 2nd half of this decade (Gartner)
- Increasing demand for media diversity
 - Tape is the only true archive storage medium today
- Limited longevity of current data storage media
 - Require migration typically every 7 10 years
- Increasing sustainability considerations
 - Reducing resource utilization, energy & carbon footprint


Source: https://www.snia.org/educational-library/lto-technology-and-two-dimensional-erasure-coded-long-term-archival-storage-rail

DNA enables high-density archive storage

T

DNA Data Storage – Designing Storage Using Nature's Playbook

- The physics of DNA is well understood
- Synthesis & sequencing technologies exists
- DNA bases store bits: A, C, T, G → 00, 10, 01, 11
- Enabling century scale archive storage solutions
- Data is the Medium, Software Defined Storage
- Stable format, always able to read natural DNA
- Sustainable, lowest energy storage carbon footprint

Source: https://www.ncbi.nlm.nih.gov/books/NBK26821/

DNA Data Storage is delivering a unique value proposition, initially addressing deep archive to accessible archive use cases

Storage Capacity No Issue for DNA Data Storage

29,000x volumetric density 5,000,000x mass density >10x migration longevity

Capacity: 20 TB

By volume: 51.3 MB/mm³

By weight: 29 GB/g

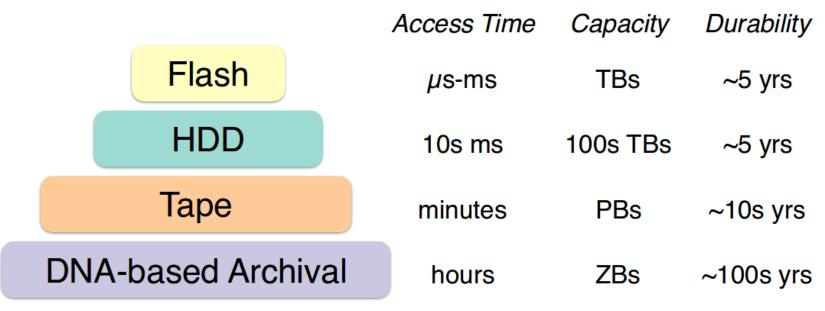
Capacity: 18 TB

By volume: 77.4 MB/mm³

By weight: 90 GB/g

Capacity: 250 µl

By volume: $\approx 16.6 \text{ B/nm}^3$


By weight: ≈ 450 EB/g

The Decadal Plan for Semiconductor - Storage Grand Goal:

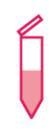
Discover storage technologies with >100x storage density capability and new storage systems that can leverage these new technologies

DNA Data Storage Emerging as 'Time Capsule' Archive Storage

TODAY: MB-class SOON: **GB-class** Early Access Solutions

Source: https://pdfs.semanticscholar.org/7b06/ba3effa9fc7b2f194a355bcb69601ef1ea56.pdf

DNA Data Storage Technology



DNA Data Storage Workflow

Coding

Synthesis

Storage

Retrieval

Sequencing

Decoding

T

Goal: Develop a Chip that Produces TB Scale Coded DNA

- DNA is synthesized on a chip
 - Use a 2D array of electrochemical reactors to synthesize strands of DNA
 - After synthesis, the DNA is washed into a tube, then amplified, purified, and packaged
- Chip capacity is limited by the array pitch and chip size
 - There is a scaling limit; each reactor needs to produce enough DNA to practically store
 - Given the scaling limit, 1 TB from a chip is the practical limit otherwise the chip becomes too large
- Twist's chip capacity roadmap
 - 64 GB → 256 GB → 1 TB
 - We are working on the 64 GB chip
- Synthesis sustainability considerations
 - Enzymatic DNA Synthesis (EDS) ideal technology
 - Cost effective EDS technology is a key enabler

Imagene's DNASHELL

- DNA degrades by oxidation
 - Hermetically packaging DNA leads to a long shelf life
 - The package can be checked periodically for leaks no leaks, no degradation
- DNA is dense, but packaging needs to be practical
 - Industrial automation required for process steps
 - And tubes that can be laser welded shut
- Barcoded tubes can be packed in arrays
 - Arrays are configurable
 - Array sizes: 96 TB, 384 TB, or 1,536 TB per bio automation spec

96 DNASHELL Array

Sequencing

- Current sequencers focused on bio (genomics) applications
- Practical for up to GB-class DNA Data Storage
- Single run currently takes approximately 24 hours
- Overall sequencing cost depends on reading frequency
- As DNA sequencing cost is declining market will expand
- Multiple groups working on new sequencing technologies

Sequencing

DNA Data Storage Productization

DNA Data Storage Solutions Concepts

Vault

- Offline / Offsite data archiving solution
- Air gapped / Hacker safe
- Very low maintenance costs
- High density / Small footprint
- Immutable write once media
- Read with standard DNA sequencer
- Sustainable rugged solution
- Lowest long term TCO

Library

- Data Center ready solution
- Fully automated system with standard interface
- Integrates with existing storage applications
- Highest volumetric storage capacity
- Exceeds conventional data longevity capability
- Operated by IT team
- STaaS deployment
- Lower long term TCO

DNA Data Storage Solutions – Status

Vault

- Sampling today in MB scale
- GB scale pilots soon
- TB scale will follow
- Currently only available for select pilot customers
- Looking for innovative early-adopters, customers that will help shape the product

Library

- Requirements and design phase
- Estimated availability in several years
- Open for technology development collaboration
- Looking for innovative early-adopters, customers that will help shape the product

DNA Data Storage – Library: Concept System Requirements

System outline:

- Granular storage: capsules / tray
- Data maps logically to physical location
- Standard data center environmental conditions
- System components field serviceable / replaceable
- Maximizes DNA volumetric storage density
- Maximizes write parallelism for throughput

Leveraging tape ecosystem key to achieving fastest TTM!

DNA Data Storage – Key Technology Enablers

Synthesis	TB scale TB per day Water-based
Storage/Retrieval	PB scale Automation Easy copy & store
Sequencing	TB scale TB per day Non-destructive
System	Data Center Ready Software integrated Object Storage APIs

DNA Data Storage Customer Pilots

Twist DNA Data Storage Pilots

- Archiving example use cases:
 - Movie series, videos, images, performances, ancient & important documents and manuscripts
 - Artwork, NFT art, crypto currency, scripts, museum collection, national anthem
 - Human race and individual legacy preservation

Yale University Library

DNA Data Storage Ecosystem

Building the DNA Data Storage Ecosystem

DNA Data Storage Alliance recently became a SNIA Technology Affiliate, with dedicated charter and P&P

History

- Formed in October 2020 by Ilumina, Microsoft, Twist and Western Digital
- More than 50 member organizations across the entire eco system

Mission

Create and promote an interoperable storage ecosystem based on DNA as a data storage medium

Scope

- Educate the DNA data storage market to create awareness and adoption
- Identify use cases in various markets/industries for the use of DNA data storage
- Develop an industry technology roadmap for DNA data storage
- Develop standards or specifications as needed by ecosystem

DNA Data Storage Conclusion

DNA Data Storage – What it is and What it is not

DNA is not...

- Storing all the world's data in a shoebox
- Coming to a DC nearby in the next 2 years
- A hot/warm storage medium
- Inexpensive to write (yet)

DNA is...

- A new, complementary cold layer in the storage pyramid
- An ideal medium for an offline copy and media diversity
- A medium lasting 100+ years in the right packaging
- Always readable, for as long as humanity reads DNA
- Eliminating migration; minimal maintenance, energy use
- Broadening the archive storage media choices available
- Offering the lowest long term TCO

A A G A C A C G A T A G A C G A G A A T G A C A C G A C T A C TATAGCTACGACTAGATAATCTAQACGAGCATAATCATAGACA TAAGAGAGAT TEGATAGAAT TAATTAGCAT GATAGATAAT TAGC C G A G A G A G A C G A A T Q C A T Q C G A G Q T A G C T A C G A G T G A G T G G A T A T A C G A T A A G G Q T T A C T A C G A T C G A C T A G T A T C A G T A A G A G TAAAAGCCGCGAAGACGGATTACTAGCAATCATQGATAGCAAGA A G Q C A G G A C A C T A T C A G C G C T T A C A G C A Q T A T Q A T C G G A G G G C A T A G C A T C A T A T C G A G G G C G Q G A T G A G C A G C T A T G Q T A Q T A Q T A T C C G A C G A T C A T C C G C T G A T C A G C A G T C T A C T A G T C A G A C A G AAATCATGGAGATCTACAGGTATTATATCCCCCCATAGAGC